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Abstract

In the framework of static mechanism design games with non-
pecuniary rewards, we solve for optimal student grading schemes
and attempt to explain the observed mismatch between students�
grades and their abilities. The model predicts that the more pes-
simistic the teacher is about her students, the more generous
she should be in grading them. Generally, the "no distortion at
the top" property ceases to hold for optimal contracts with cost-
less non-pecuniary rewards, and we argue that the compression
of ratings as witnessed in job performance appraisals could be
an equilibrium outcome. The presented theoretical �ndings are
strongly supported by empirical evidence from the related litera-
ture in psychological and educational measurement.
Keywords: Mechanism design; non-pecuniary incentives; op-

timal grading schemes; mismatch of grades and abilities; com-
pression of ratings.
JEL-codes: D82, D86, I20, J41.

1 Introduction

The vast literature on subjective evaluation has long dealt with the phe-
nomenon of the compression of ratings, which is about supervisors�shal-
low di¤erentiation of good from bad performance of their subjects by
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means of ratings (see, e.g., Prendergast, 1999, for an economist account
on the issue, or Murphy and Cleveland, 1995, for a review of related
studies from the psychological strand of the literature). Within this
literature, we can also position the phenomenon of mismatch or low
correlation between students�university grades and their actual abili-
ties, which similarly raises the question why teachers turn out to be too
generous in grading their students (Goldman and Widawski, 1976, and
Johnson, 2003). In general, and quite surprisingly, these phenomena uni-
versally persist in di¤erent settings despite that they seemingly lead to
ine¢ cient outcomes of principal-agent relationships. Evidently, given a
uniform rating or grading scheme, agents would put just enough e¤ort to
reach some minimum performance standard granting the desired reward,
but, simultaneously, there must be some rationale behind those endur-
ing coarse ranking schemes. However, neither the psychological strand
of the literature nor that of economics provides any rigorous explanation
of these phenomena, where the argument is typically somewhat heuristic
(see Prendergast, 1999, Murphy and Cleveland, 1995, or Johnson, 2003).
In this paper, we attempt to tackle the raised phenomena through

the perspective of a static principal-agent model with hidden information
featuring costless transfers between the parties. In particular, we treat
rating or grading standards as an implicit contract between the principal
and the agent, the crucial feature of which is a costless non-pecuniary
reward from the principal to the agent in return for the agent�s exerted
(observable and veri�able) e¤ort to the principal�s advantage. To em-
phasize, the reward enters only the payo¤ function of the agent, and
the principal herself bears no cost (at least, no variable cost) of com-
pensating the agent. A more thorough discussion why this assumption
of the model is realistic is postponed till later in the text, and here we
only mention that the situations applicable to the model would feature a
non-pecuniary reward such as praise or, more tangibly, a grade at school
or a rating in a job performance appraisal, which can motivate the agent
to put more e¤ort.
For ease of exposition, from the very outset we build the model

around the premises of a concrete example about a teacher�s designing
grading rules to evaluate the performance of her students, even though
we generally aim at a broader class of related agency problems (because
of that the pairs of terms "teacher-student" and "principal-agent" are
used synonymously in the paper). Accordingly, the purpose of this paper
is to design optimal grading schemes on the part of the teacher who aims
at extracting the highest expected e¤ort level from her grade-minded stu-
dents. Based on the obtained theoretical �ndings, we shall argue that
the observed mismatch between students�grades and their abilities, and
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the compression of ratings, more generally, could be the optimal solu-
tions to particular agency problems. Importantly, as shown later, the
existing empirical evidence supports the conclusions of the model.
Despite being theoretically oriented in the conventional economics

sense, this paper has, however, been largely motivated by �ndings from
behavioral and experimental economics literature on contractual rela-
tionships. There is a growing number of theoretical and empirical stud-
ies arguing that along with pecuniary incentives people also tend to
care about non-pecuniary motives and rewards, associated with the con-
tract�s design and implementation, such as the resulting self-esteem or
importance of the agent, his perceived trustworthiness, or the princi-
pal�s elicited praise and esteem (Brennan and Pettit, 2004, Frey and
Osterloh, 2002, Berg et al, 1995, and Falk and Kosfeld, 2006). As a
result of that, the standard principal-agent model with merely mone-
tary incentives may render un�t to account for variation in e¤ort levels
exerted by, say, employees on �xed-wage jobs with no other present or
future pecuniary stimuli, as already discussed in Akerlof (1982). The
obvious direction for further research has become to enrich the standard
model with more elaborate mechanisms aimed at capturing more closely
the complexities of a principal-agent relationship (e.g., Sliwka, 2007, and
Benabou and Tirole, 2003). However, when thinking of a principal-agent
model with non-pecuniary rewards, the most natural framework and ap-
plication to bring forward is a teacher-student relationship, which this
paper actually does; though, we shall also argue that the model, pre-
sented here, can be applied to other similar frameworks as well.
The proposed re�nement that, unlike the agent, the principal is indif-

ferent to the transfer between them is by no means new in the contract
theory literature. It was formally studied, for example, in Guesnerie
and La¤ont (1984), one of the founding articles on mechanism design
aimed at providing an all-encompassing solution to a broadly de�ned
principal-agent problem. In particular, they distinguish between �type
A�and �type B�preferences of the principal, where with the former pref-
erences the principal�s utility does not depend on the transfer between
the parties, while the latter preferences are those of a more conventional
appearance with costly transfers. In their study, however, the �type A�
preferences are mainly discussed with the social planner�s problem to
solve in mind, in which the transfer between the parties is equivalent,
literally speaking, to putting money from one pocket into another of the
same jacket leaving the social welfare intact. As it will be argued, the
solution method, as suggested in Guesnerie and La¤ont (1984) to solve
the principal-agent problem with the "A type" preferences, does not ap-
ply to our case, where the principal is more, in fact, of "type B", i.e.,
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caring only about her own well-being with a fortunate feature that she
does not pay for motivating the agent.
Nor does this paper stand alone in designing optimal grading rules.1

Dubey and Geanakoplos (2005) also target the same problem but from
a di¤erent perspective: they model a teacher-student relationship as
a game of status with private information and stochastic output simi-
larly as in a tournament. Hence, unlike in our model, they start with
a multiple-agent setting, where an agent�s utility from a grade depends
on his or her class ranking, i.e., status, the rewarded grade results in,
but not on the grade per se. Another di¤erence between the two models
is that in Dubey and Geanakoplos (2005) the teacher designs grading
rules in order to induce all her students to put in the maximal e¤ort,
which produces a stochastic output, while in our model it is the highest
expected e¤ort level that the teacher attempts to maximize, and there
is no stochastic component in output. Not surprisingly, given these
modeling di¤erences, we draw di¤erent conclusions about optimal grad-
ing schemes. Dubey and Geanakoplos (2005) �nd that teachers should
use coarse grading schemes and "pyramid" the allocation of grades: in
equilibrium the highest grade would be available to fewer students than
the second-highest grade, and so on. Our model similarly predicts that
teachers should apply coarse grading schemes, but the level of "coarsen-
ing" depends on the distribution of student abilities. Furthermore, we
don�t �nd "pyramiding" to be an optimal grade allocation, especially,
when there is a large mass of less able students in the class.
According to our theoretical �ndings, it could be optimal for teach-

ers to appear excessively generous with their students, which, in fact,
has been a big concern in the literature of educational measurement.
We show that with an intention to maximize the average e¤ort of her
students the teacher who is pessimistic about their abilities should be
more generous when grading them than she would have been if she had
held higher expectations about their abilities. All this can lead to un-
even distributions of grades among classes that are di¤erent in students�
abilities, and to a mismatch and low correlation between grades and stu-
dents�actual abilities. In general, extrapolating this paper�s theoretical
�ndings to other settings featuring non-pecuniary rewards such as in job
performance appraisals with ratings, we shall argue that the compres-

1Though, it needs to be reckoned that not much theoretical work has been done
on modeling a teacher-student relationship as a principal-agent model on its own,
whereas this relationship has typically been modeled as a part of a more global game
involving potential employers or university administration (see, e.g., Ostrovsky and
Schwarz, 2005). At the same time, more research has been done on the empirical
side of the problem (see, e.g., Johnson, 2003).
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sion of ratings may turn out to be an optimal solution for the principal
whenever she is uncertain about each agent�s abilities or is not allowed
to discriminate among her agents by o¤ering ability-speci�c contracts.
As for empirical evidence, Goldman and Widawski (1976) report a

negative correlation between students�Scholastic Aptitude Test scores
(could be seen as a proxy measure of student abilities) and the grading
standards at the classes the students were majoring in. According to
this study (conducted at University of California, Riverside), the ob-
served negative correlation is due to the fact that professors in a �eld
containing students with high abilities tend to grade more stringently
than do professors in a �eld with lower-ability students� precisely as
our model predicts. These empirical �ndings were con�rmed by similar
studies conducted at Dartmouth College (Strenta and Elliott, 1987) and
at Duke University (Johnson, 2003).
The paper is organized as follows. Section 2 introduces the model,

which is formally solved in Section 3. Section 4 discusses the main �nd-
ings and relates them to the phenomena raised in the introduction. Sec-
tion 5 reviews the existing empirical evidence, and Section 6 concludes.

2 The Model

This section presents a principal-agent model with non-pecuniary re-
wards, which, for expositional tractability, closely follows, when possible,
the textbook variants of related static models with adverse selection and
the single agent as in, e.g., Bolton and Dewatripont (2004) or Fudenberg
and Tirole (1991).
Consider a teacher who has to set up grading rules for the students

enrolled in her class.2 A grading rule assigns grades� that are costless
for the teacher to reward� to students�performance levels, which are
veri�able and assumed to be perfectly correlated with their costly learn-
ing e¤orts. The teacher believes that it is their own grades that the
students care about, and that they incur only disutility from studying.3

In contrast to students�wants, the teacher wants all her students to

2To get round the discussion why students select particular courses, we can as-
sume that our attention is only on compulsory courses, and students� choice of a
major in college is based on considerations other than the expected grade average.
This assumption is in line with empirical evidence that ability sorting among ma-
jors primarily takes place because of students� intrinsic preferences for particular
majors (and not because of expected future earnings, which are, on the other hand,
correlated with university grades), see, e.g., Arcidiacono (2004).

3By this, we assume that the expected distribution of grades in the class does not
a¤ect a student�s utility from a targeted grade and, accordingly, his or her learning
e¤ort choice decision. This assumption allows us to treat our model as a single-agent
model. An extension to a multiple-agent problem is left for future research.
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put as much e¤ort as possible for a given grade. However, when set-
ting grade-for-performance (equivalently, grade-for-e¤ort) schemes, the
teacher also needs to balance the incentives made available to her stu-
dents, who may have di¤erent learning abilities but are all identical in
other respects, including their attempts to save on e¤ort needed for a
given grade. The teacher knows the distribution of students�abilities,
say, from her previous experience, but she cannot tell what abilities a
particular student has.4 Hence, assuming that she equally cares about
every student�s e¤ort, the teacher�s goal becomes to maximize the aver-
age e¤ort in her class subject to the customary individual rationality and
incentive compatibility constraints as more succinctly described below.
Using the direct mechanism approach with truthful revelation, the

teacher designs a set of e¤ort-grade allocations fx(�); r(�)g�2[�a;�b], where
� is a student�s ability measure distributed according to a twice di¤eren-
tial cumulative distribution function F over [�a; �b] with the probability
density function f ; the grade function r maps the ability set [�a; �b]
into [0; 1] so that the maximum grade the teacher can o¤er is 15; and
the e¤ort function x maps [�a; �b] into a bounded interval [0; �x], which,
when needed, is assumed to be large enough to allow for an interior so-
lution. Upon observing the set of available e¤ort-grade allocations, a
�-type student optimally selects a type �̂ to report to the teacher, who,
subsequently, demands to put the e¤ort x(�̂) in return for the grade r(�̂).
The implemented allocation (x(�̂); r(�̂)) results in the teacher�s utility

of
UP (x(�̂); r(�̂)) � V (x(�̂));

which is increasing in the e¤ort x. Accordingly, the �-type student enjoys

4Here, we impose a hidden information structure in our model. However, if it
seems restrictive, as it could be thought of when considering teacher-student rela-
tionships, then we can, alternatively, allow that the principal is able to tell a student�s
type (similarly to Benabou and Tirole, 2003), but at the same time we would require
that the teacher cannot discriminate among her students by applying ability-speci�c
grading rules. With this alternative formulation, the optimization problem remains
intact as in the case with the adverse selection framework, which is, therefore, re-
tained for its link with the existing literature.

5Without an upper bound on the costless reward function, the optimal grading
rule would be to demand the maximal feasible e¤ort from every type of students and
to reward them whatever abundantly. Putting an upper bound on the reward func-
tion not only remedies the arisen implausibility of the solution, but it is also a most
natural thing to impose when considering teacher-student relationships, where there
is typically a formal, institutionally set highest grade. Similarly, job performance is
also normally appraised on a �nite rating scale, and, �nally, even praise, which could
be thought as formally unbounded, may still have only a limited e¤ect on the agent�s
utility resulting from it.

6



the utility of
UA(x(�̂); r(�̂); �) = r(�̂)� C(x(�̂); �);

which needs to be at least as large as his reservation utility (henceforth,
normalized to 0 for all types of students), and where C(x; �) is the cost
function measuring disutility from putting an e¤ort x, with the proper-
ties Cx > 0; Cxx > 0; and Cx� � 0 (i.e., the marginal cost from e¤ort is
lower for more talented students).
Finally, assuming that the principal and student are both rational

own-utility maximizers, the optimization problem of the principal is to
�nd the set of allocations fx (�) ; r (�)g such that for every � and �̂ it
maximizes

[Program 1] Z �b

�a

V (x(~�))f(~�)d~�

subject to
r(�)� C(x(�); �) � r(�̂)� C(x(�̂); �); (IC)

r(�)� C(x(�); �) � 0; (IR)

0 � r(�) � 1;
where (IC) stands for the incentive-compatibility constraint, which makes
sure that it is optimal for the agent to report truthfully, i.e., �̂ = � in
equilibrium, and (IR) is the individual-rationality or participation con-
straint, and the last constraint imposes an upper bound on the reward
function.
To justify the main feature of the model that it costs nothing for the

teacher to grade her students, or, at least, the cost is the same irrespec-
tive of the grade rewarded, but at the same time grades are of a value
to students, we need to tackle two questions: (1) if there are no hid-
den costs of pecuniary nature; and (2) why students actually care about
grades. With regard to the �rst question, one could think of reputational
concerns that teachers may face while setting up grading standards. Stu-
dents aiming at higher grades may base their decision whether to enroll
in a particular course on the stringency of the applied grading standards
simultaneously putting pressure on teachers to soften their grading rules
and lure more students to their classes (see, e.g., Johnson, 2003). How-
ever, as already discussed in footnote 2, students seem to select a major
based on their personal preferences for it rather than on his or her ex-
pected grade at the selected major. Therefore, at least at major courses,
teachers�reputational concerns should be of a lesser magnitude, hence,
with the focus on major courses, as can be assumed henceforth, should
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alleviate this problem. Furthermore, neither will the empirical evidence
of the model be prejudiced, for the presented evidence mainly comes
from the grading standards used at major courses. As for the "demand"
side, i.e., the second question, we can safely argue that students are
likely to derive higher utility from a higher grade everything else equal
due to, for instance, better signals sent to their parents, friends or even
to themselves about their personal characteristics.6

Prior to solving the program, we place some further structure on
the model by commonly assuming (A1)-(A3) that are loosely de�ned
below. First, (A1), the single-crossing property holds (in fact, it has
been imposed by requiring Cx� � 0). Second, (A2), we impose the
assumption of the monotone increasing hazard rate, de�ned as h(�) =
f(�)=(1 � F (�)), and the assumption implies that h0(�) > 0. Finally,
(A3), without going into much detail, we require the functional forms
of V and C be such that, when needed, the second-order conditions are
ful�lled, in particular, we require that Cxx� � 0.

3 Solution

The standard adverse selection principal-agent model with monetary
(i.e., costly) transfers is solved using the method due to Mirrlees (1971),
the main idea of which is to obtain a functional equation with one un-
known by merging the agent�s optimization problem with that of the
principal. However, in our case with costless non-pecuniary rewards
this method needs to be re-examined because the intercomparison of the
parties�utilities is no longer possible, for, formally speaking, there is no
linking term between the two utility functions, as is the transfer function
in the standard model.7 Instead, we shall approach Program 1 through
its discrete version, as suggested in the next subsection, and, then, we
shall take the limit of the obtained discrete-case results to arrive at the

6Ideally, one would want to think of grades as ability signals to the labor market,
but then our model would need to be closed by introducing one more stage, the
recruitment stage (e.g., Ostrovsky and Schwarz, 2005). However, this extension
would complicate things a lot, because it would eventually require elaborating on the
school entry decision, too. Therefore, we ignore this discussion by just saying that
once at school students tend to care about grades.

7Arguably, we could express our optimization problem in the terms of the standard
framework by de�ning the principal utility function as UP (x; r) = V (x) � �r, and
solve the problem for an arbitrary non-zero �, and then to obtain the solution to
Program 1 by taking the limit �! 0. However, we would then also need to modify
the solution method due to an upper bound on the reward function, and to o¤er
an elaborate discussion about any possible discontinuities at the limit. The main
reason for proposing a di¤erent way of solving the program is the idea to approach
the problem directly without �rstly reverting to a costly-transfer case. Arguably, the
suggested method also provides a clearer intuitive account of the obtained solution.
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general solution with the continuum of agent types.8 In addition, to
make the problem more mathematically tractable we assume the follow-
ing functional forms:

V (x) = x and C(x; �) =
g(x)

�
: (1)

As will be argued later, the main properties of the obtained solu-
tion are by no means in�uenced by the assumed functional forms of the
teacher�s utility function V and student�s e¤ort cost function C. As for
the e¤ort cost function, we basically assume that the function C is sep-
arable in the e¤ort x and the type �, i.e., C = g(x)t(�), but once this
granted, the further simpli�cation g(x)=� is just a matter of convenience.
As for the teacher�s linear utility in the student�s e¤ort, it implies that
the teacher attaches equal weights to marginal e¤ort increases of all her
students, i.e., she cares equally about every student. Later in the text,
this case is considered as a benchmark against two other cases when
V is strictly concave� the teacher values more the marginal e¤ort in-
creases of low performers than those of high performers� and when V
is strictly convex (but not too convex)� the teacher, on the contrary to
the previous case, more values increases in the performance of more able
students.9

Discretization
As suggested previously, we discretize the student type space [�a; �b]

into n equal-length intervals:
[�a; �a + @�] ; :::; [�a+i@�; �a+(i+1)@�]; :::; [�a + (n� 1)@�; �b], where

@� = (�b� �a)=n. Accordingly, we discretize the initial (continuous) dis-
tribution F for students�abilities by setting p(�i) =

R �a+i@�
�a+(i�1)@� f(�)d�,

i = 1; :::; n, which is the probability mass of student types within the in-
terval [�a + (i� 1)@�; �a + i@�]. In particular, in the probability p(�i) we
understand by �i the starting point of the interval [�a + (i� 1)@�; �a + i@�],

8In footnote 4, we mentioned that we could treat the adverse selection framework
as the approximation of the perfect information framework with the condition that
all the students irrespective of their abilities are subject to the same grading rules.
Hence, with perfect information, if there are a �nite number of students in the class,
then we exactly face a discrete-type problem, as de�ned below, and the limiting
continuous case is just a convenient way of summarizing the properties of the solution
to the discrete-type problem.

9The discussion about the functional form of the teacher�s utility function is rel-
evant in the light of the recent merit-pay programs aimed at improving teachers�
incentives (see Lavy, 2002, Atkinson et al, 2004, or Lazear, 2003). Arguably, it is in
the hands of the social planner to a¤ect the functional form of the teacher�s utility
function when designing pay-for-student-performance schemes.
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i.e., �i = �a+(i�1)@�; i = 1; :::; n: This kind of discretization will allow
us to switch to the continuous case by taking the limit n!1.
Correspondingly, the discrete version of Program 1 is de�ned below,

where the teacher is to o¤er the contract fx(�i); r(�i)gni=1 that maximizes
for i = 1; :::; n

[Program 2]
nX
i=1

p(�i)x(�i)

subject to
r(�i)� C(x(�i); �i) � 0; (IRi)

r(�i)� C(x(�i); �i) � r(�j)� C(x(�j); �i); j 6= i; (ICi)

0 � r(�i) � 1:
First-order conditions
As it is standard in the principal-agent problems with adverse selec-

tion, the only individual rationality constraint that binds is IR1, i.e.,
that of the least e¢ cient agent. After imposing that the e¤ort x(�i) is
non-decreasing in the student�s type, which will have to be checked sepa-
rately, due to the Spence-Mirrlees property we can restrict our attention
to the following set of downward binding adjacent IC constraints:

r(�i)� C(x(�i); �i) = r(�i�1)� C(x(�i�1); �i); i = 2; :::; n: (2)

Observing that it must be optimal for the teacher to reward at
least someone with the highest grade of 1 since it costs nothing to her,
hence, in equilibrium the reward to the most e¢ cient type has to be 1,
i.e., r(�n) = 1. Next, supposing that the solution takes the form of a
separating equilibrium, we can combine all the binding constraints (2)
together with r(�n) = 1 into one constraint, by doing which we elim-
inate the reward function r from the program rendering the following
implementability constraint:

1�
nX
i=1

C(x(�i); �i) +

nX
i=2

C(x(�i�1); �i) = 0: (3)

The Lagrangian of the reduced optimization program (without the
monotonicity constraint on the e¤ort x) is de�ned as

L(fx(�i)gni=1; �) =
nX
i=1

p(�i)x(�i)+�(1�
nX
i=1

C(x(�i); �i)+
nX
i=2

C(x(�i�1); �i)):
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The �rst-order conditions with respect to e¤ort levels x(�i) are

p(�i) = �(Cx(x(�i); �i)� Cx(x(�i); �i+1)); i = 1; :::; n� 1;

p (�n) = �Cx(x(�n); �n):

Dividing the adjacent �rst-order conditions renders

p(�i+1)

p(�i)
=
Cx(x(�i+1); �i+1)� Cx(x(�i+1); �i+2)
Cx(x(�i); �i)� Cx(x(�i); �i+1)

; i = 1; :::; n� 2; (4)

p(�n)

p(�n�1)
=

Cx(x(�n); �n)

Cx(x(�n�1); �n�1)� Cx(x(�n�1); �n)
: (5)

Intuitively, the equilibrium e¤ort-grade allocations need to be such
that the teacher�s gains and losses in terms of students�e¤ort changes
resulting from a marginal change in the contractual allocations o¤set
each other. Comparing condition (4) with (5), we can notice that the
trade-o¤ between gains and losses from a change in the contractual al-
locations for the two most e¢ cient agents is di¤erent from that when
changing the allocations for the rest of the agents.
Formally, the right-hand side of (5) can be approximated by

Cx(x(�n); �n)

Cx(x(�n�1); �n�1)� Cx(x(�n�1); �n)
=

=
Cx(x(�n); �n)

Cx(x(�n � @�); �n � @�)� Cx(x(�n � @�); �n)
�

� Cx(x(�n); �n)

�@�Cx�(x(�n � @�); �n)
�

� Cx(x(�n); �n)

�@�(Cx�(x(�n); �n)� @xCx�x(x(�n); �n))
; (6)

where @x = x(�n) � x(�n�1). The above approximation becomes more
accurate with smaller @�.
We observe that the left-hand side of (5), p(�n)=p(�n�1), tends to 1

with @� approaching 0, while the right-hand side, in contrast, tends to
diverge from 1 when @� approaches 0 unless the di¤erential in e¤ort level
@x is negative, but it is precluded by the constraint of the non-decreasing
e¤ort x. Therefore, condition (5) cannot hold for a small enough @� and,
in particular, for the continuum of types � (i.e., at the limit @� ! 0).
Hence, the supposition that the solution takes the form of a separating
equilibrium, made when constructing implementability constraint (3), is
wrong for �ne enough distributions of abilities, and in that case there
can�t be a separating equilibrium among the most e¢ cient agents.
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Intuitively, the �nding that there is no separating equilibrium among
the most e¢ cient agents should not be surprising. Consider the teacher
increasing the demanded e¤ort level of the second-most-e¢ cient student
from x(�n�1) to x0(�n�1) against the corresponding grade increase from
r(�n�1) to r0(�n�1) = 1, and so that this change is acceptable to the
student (otherwise, he would not report truthfully). Comparing the
teacher�s gains and losses from this change, the loss is the most e¢ cient
agent�s e¤ort reduction from x(�n) to x0(�n�1) granting the same reward
of 1 [by construction, it must be that x(�n) > x0(�n�1)]. At the same
time, the gain accrued to the teacher is not only the increase in the
second-most-e¢ cient agent�s e¤ort level by x0(�n�1) � x(�n�1) > 0, but
actually it is the whole string of follow-up increases in other students�
e¤ort levels x(�i) ! x0(�i), i = 1; :::; n � 2, made at no extra cost
(due to costless rewards) to �ll the slack in the incentive-compatibility
constraints arisen after the increase in the reward r(�n�1) to r0(�n�1).
Hence, unless the probability mass of the most e¢ cient type �n is big
enough (which in the continuous case is possible only for some irregular
distribution F for abilities), the teacher�s gain from an increase in the
second-most-e¢ cient student�s e¤ort is larger than the corresponding
loss. Eventually, the teacher will increase the expected e¤ort of her
students by pooling the most e¢ cient agents, who are set for the highest
reward of 1, until their probability mass is big enough to o¤set the gains
and losses described above.

"Bunching at the top" interval
When condition (5) doesn�t hold, which occurs, as we showed, for a

small enough @�, we proceed by adding up the probability mass of the
agents subject to the highest reward of 1 until the updated �rst-order
condition (derived in the same way as before) is ful�lled for some agent
type �m (let m > 1, i.e., there is an interior solution to the problem;
the continuous-type case below will be analyzed more generally). The
updated condition (5) becomes as follows

P (�m)

p(�m�1)
=

Cx(x(�m); �m)

Cx(x(�m�1); �m�1)� Cx(x(�m�1); �m)
�

� Cx(x(�m); �m)

�@�(Cx�(x(�m); �m)� @xCx�x(x(�m); �m))
;

where P (�m) =
Pn

i=m p(�i). In case there is no such that �m, for which
the above condition holds, then the pooling equilibrium interval extends
to the whole student type space.
Next, multiplying both sides of the last expression by @� and taking

the limit @� ! 0 on both sides give the condition for the pooling equi-
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librium [��; �b] among the most e¢ cient agents in the continuous case
(and when �� > �a):

1� F (��)
f(��)

= � Cx(x(�
�); ��)

Cx�(x(�
�); ��)

: (7)

Using the assumption that the cost function C(x; �) is separable in x
and � with the imposed functional form as in (1), the pooling equilibrium
condition (7) becomes free of the e¤ort level term x as below

1� F (��)
f(��)

= ��: (8)

More generally, de�ne G(�) � (1�F (�))=(f(�)�), which is monoton-
ically decreasing in � due to the monotone hazard rate assumption. If
there is a solution to G(�) = 1 : � 2 [�a; �b], then the starting value of
the "bunching at the top" interval is �� = argfG(�) = 1g, if there is no
solution to G(�) = 1 : � 2 [�a; �b], then we set �� = �a. More succinctly,
the lowest student type subject to the highest reward is determined by
�� = minf� : G(�) � 1; � 2 [�a; �b]g. All in all, the pooling equilibrium
contractual alloaction is x(�) = x�; r(�) = 1 for every � in [��; �b], where
the e¤ort level x� is determined by the remaining dynamics described
below.10

The remaining dynamics in [�a; �
�)

After establishing the equilibrium condition for the most e¢ cient
students, we look at the remaining interval of agent types [�a; �

�) using
�rst-order condition (4), which can expressed as

p(�i+1)

p(�i)
=
Cx(x(�i+1); �i+1)� Cx(x(�i+1); �i+2)
Cx(x(�i); �i)� Cx(x(�i); �i+1)

�

� Cx�(x(�i+1); �i+1)
Cx�(x(�i); �i)

:

After some further transformations:

1� p(�i)� p(�i+1)
p(�i)

� Cx�(x(�i+1); �i+1)

Cx�(x(�i); �i)
;

Cx�(x(�i); �i)� Cx�(x(�i); �i)
p(�i)� p(�i+1)

p(�i)
� Cx�(x(�i+1); �i+1);

10At this point, we can observe that a pooling equilibrium among the most e¢ cient
agents can be obtained with or without the assumption about the log-concavity of the
distribution function F , i.e., the monotone hazard rate (see Bagnoli and Bergstrom,
2005), since the interval [��; �b] cannot be empty because of G(�b) = 0 < 1.
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and dividing both sides by @� and rearranging terms give

Cx�(x(�i + @�); �i + @�)� Cx�(x(�i); �i)
@�

�

�Cx�(x(�i); �i)
p(�i + @�)� p(�i)

@�p(�i)
:

Taking the limit @� ! 0 on both sides of the last expression renders for
any � (the subscript i, henceforth, is dropped)

Cx�x(x(�); �)x
0(�) + Cx��(x(�); �) =

f 0(�)

f(�)
Cx�(x(�); �);

which is a �rst-order di¤erential equation for x(�). Substituting g(x)=�
for C(x; �) gives

g00(x)(� 1
�2
)x0(�) + g0(x)

2

�3
=
f 0(�)

f(�)
g0(x)(� 1

�2
); (9)

which we can solve for x(�):

x(�) = g
0�1(Af(�)�2); (10)

where A is a constant to be determined. The constraint for the e¤ort
function x to be non-decreasing is met, which follows from equations (9),
(8), and the monotone hazard rate assumption.11

The reward function r is derived from the binding incentive-compatibility
constraints ICs, which in the continuous case take the form

r0(�) = Cx(x(�); �)x
0(�);

r0(�) =
g0(x(�))

�
x0(�);

or, using the expression for x as in (10),

r0(�) = Af(�)�x0(�) =
A2f(�)�2(f 0(�)� + 2f(�))

g00(x(�))
;

and, �nally, the grade function r can be expressed as

r(�) = A2
Z �

�a

f(~�)~�
2
(f 0(~�)~� + 2f(~�))

g00(x(~�))
d~� +B: (11)

11From condition (8) it follows that f(�)
1�F (�) <

1
� for � in [�a; �

�), and from the

monotone hazard rate: f
0(�)
f(�) > �

f(�)
1�F (�) ; the two inequalities together render

f 0(�)
f(�) >

� 1
� . Given this derived condition and g

0(x) > 0; g00(x) > 0 (which follow from the
assumptions on the cost function C), eq. (9) holds only if x0(�) > 0:
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The constant B follows from (11) and the binding IR constraint
r(�a) = g(x(�a))=�a, which together render

B =
g(g

0�1(Af(�a)�a))

�a
: (12)

Lastly, the constant A is pinned down through the condition r(��) =
1, which is

1 = A2
Z ��

�a

f(~�)~�
2
(f 0(~�)~� + 2f(~�))

g00(x(~�))
d~� +

g(g
0�1(Af(�a)�a))

�a
: (13)

A word of caution should be said here since, using the contract theory
terms, we do not mention about a possible shutdown of some ine¢ cient
types. Therefore, we should rather replace �a with �� � �a and provide
the condition for the least e¢ cient agent type �� considered for non-zero
contractual allocations. In the case of a shutdown, the IR1 constraint
would be replaced with that for �� resulting in some level shifts for
x(�) and r(�), but the dynamics would remain intact. However, for
simplicity we shall ignore this possibility and make only a note that
when designing contracts with non-pecuniary rewards the incidence of
a shutdown is less likely than when designing contracts with pecuniary
rewards. For instance, with the cost function C(x; �) = x2=(2�), the
teacher will never exclude any of student types irrespective of her beliefs
about the distribution of student abilities, which is, generally, not true
if we have a standard principal-agent model with pecuniary rewards and
the above cost function C.
Proposition 1 below summarizes the solution to Program 1.

Proposition 1 Given the assumptions of the model, the solution to Pro-
gram 1� the reward function r and the e¤ort function x� is character-
ized by:

� for every agent type � in [��; �b], where �� = minf� : 1�F (�)
f(�)�

� 1;

� 2 [�a; �b]g, the uniform contract applies: r(�) = 1; x(�) = x(��),
where x(��) is de�ned by (10);

� for every � in [�a; ��) the optimal contract fx(�); r(�)g is de�ned
by (10), (11), (12)and (13).

4 Main Findings and Discussion

Here, we provide an intuitive account of the obtained solution to the
agency problem with costless non-pecuniary rewards. Simultaneously,
in this and subsequent sections, we shall try to relate the predictions of
the model to the empirical evidence relevant to the examined framework.

15



4.1 Compression of Ratings
One of the main theoretical results of the model is that in a principal-
agent model with costless non-pecuniary rewards we inevitably obtain a
pooling equilibrium for at least some of the most e¢ cient agents, which
is in stark contrast to the standard model with pecuniary rewards, where
the "no distortion at the top" property typically holds.12

Proposition 2 For an agency problem with costless rewards, the "no
distortion at the top" property ceases to hold.

The proof of this result has already been provided in the previous
section, when we showed that a uniform contract applies to all agent
types from the non-empty interval [��; �b]. Moreover, the above propo-
sition is silent about the reward function r to be bounded, for it has no
impact on the result. As we have already argued in footnote 5, with-
out an upper bound on the reward function the uniform contract would
apply to all agent types.13

Nor is the result in Proposition 2 in�uenced by the speci�c functional
form of the convex cost function C that is assumed in (1), for the result
primarily hinges on the universally present term (1� F (�))=f(�) in (7).
Should we solve Program 1 for any teacher�s utility function V , we would
get a condition equivalent to (5) as below

p(�n)

p(�n�1)
=
Vx(x(�n�1))

Vx(x(�n))

Cx(x(�n); �n)

Cx(x(�n�1); �n�1)� Cx(x(�n�1); �n)
: (14)

The above expression is identical to (5) except for the term involving
the derivative of V in x, which compares the marginal utility from the
e¤orts x(�n�1) and x(�n) accruing to the principal. If the function V
is concave in x, then the pooling equilibrium interval extends compared
to that in the linear case. The teacher attempts to boost the incentives
of low performers even further despite that it comes at the expense of
lower e¤ort levels demanded from high-ability students. In particular,
since the expression Vx(x(�n�1))=Vx(x(�n)) is greater than 1, the argu-
ment following the derived expression (6) is reinforced. However, with

12Though, recently, there have also been papers arguing the opposite. For example,
Levin (2003) presents a multiperiod adverse selection framework with observable but
not veri�able e¤ort levels, at which the "no distortion at the top" property may not
hold.
13In the principal-agent model with costly rewards, imposing an upper bound on

the reward function does not lead to a pooling equilibrium among the most e¢ cient
agents as long as this constraint is not binding, i.e., the upper bound is big enough.
However, in our model, irrespective of the size of the upper bound, we do obtain a
pooling equilibrium among the most e¢ cient agents.
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a convex utility function V the pooling equilibrium interval shrinks, be-
cause now the teacher cares more about high performers than about low
performers, but the interval still remains non-singleton unless the func-
tion V is too steep for some feasible e¤ort level x. However, the latter
possibility is excluded by requiring the teacher�s utility function V being
"less convex" than the student�s cost function C.14

As has already been suggested, the pooling-equilibrium interval may
stretch out to comprise the whole agent-type space.15 Having this result
in mind, we can address the phenomenon of the compression of ratings,
mentioned in the introduction. On the above grounds, it may not be op-
timal for a supervisor to di¤erentiate much among her employees when
evaluating their performance. The attempts to distinguish the most pro-
ductive agents are achievable only by suppressing the motivation of less
productive agents, which may have a larger adverse e¤ect on aggregate
output than the achieved higher contribution from the most e¢ cient
agents. Hence, the "leniency bias" rating scheme could be, in fact, opti-
mal, which is to give the same appraisal to every agent, provided some
minimum level of e¤ort is exerted.16

Speci�cally, thinking of a job performance appraisal by ratings and
trying to link it to the model developed above, it remains true that a
manager wants her employees to put more e¤ort and is eager to moti-
vate them in di¤erent ways. However, di¤erently from a teacher-student
relationship, the evaluation of job performance in terms of only grades
or ratings not always provides an adequate motivation for an employee.
Typically, a rating scheme is linked to the employees�pay scheme, with a
higher rating implying a higher pay, which, of course, does not �t the de-
�nition of "costless non-pecuniary rewards". However, having inquired
into the inner workings of rating-pay schemes17, in many instances we
can still think of job performance appraisals in terms of a principal-
agent model with costless rewards. Commonly, employees�performance

14The above discussion shows that changing teachers� incentives can have direct
implications on their student grading schemes. Hence, through pay-for-student-
performance incentive programs it could be possible to align teachers� incentives
with those of the social planner.
15For this to occur in our model,it is enough, for instance, to have a quadratic

cost function C = x2=(2�), the uniform distribution for the agent type �, and that
�a � �b=2.
16The above explanation is in stark contrast to explanations from psychological lit-

erature on subjective evaluation, a common example of which is given in Prendergast
(1999), footnote 34: "An obvious reason for this [leniency bias] is that it is simply
unpleasant for supervisors to o¤er poor ratings to workers, so they avoid this pain."
17I largely owe the following discussion to Ailko van der Veen, who shared with

me his experience from working at the banking industry after the presentation of the
early version of this paper at the ENABLE workshop in Amsterdam, 2006.
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is evaluated by their line managers, i.e., by low rank managers, whose
own incentive scheme does not always internalize fully the payroll cost
resulted from their evaluations of employees�performance, but it does
depend on the aggregate performance of the employees in charge (say,
through bonuses at the end of the year).18 Therefore, we may obtain a
situation when a line manager would face a soft-budget constraint when
rewarding her employees with ratings (costless to her, and on a �nite
scale), but would also try to motivate the highest expected e¤ort from
them. The possibility described, then, falls within our model, but, of
course, for its speci�c nature it needs to be studied separately, and here
it serves only as a potential alternative application of the model.

4.2 Mismatch between Grades and Abilities
Consider two classes of students with a general belief that students from
the �rst class are more able than those from the second class. In math-
ematical terms, let student types from the �rst and second classes be
random variables �1 and �2 with twice di¤erentiable distribution func-
tions F1 and F2 de�ned on the same support [�a; �b], respectively. We
understand by the general belief that the �rst class is more able than
the second class in terms of the hazard-rate dominance:

h1(�) � h2(�) for every � in [�a; �b] ;

where hi(�) = fi(�)=(1 � Fi(�)) is the hazard rate of a random student
type �i, i = 1; 2. In other words, �2 is smaller than �1 in the hazard
rate order, which can also be expressed as E1(� j � > ��) � E2(� j � > ��)
o¤ering a more intuitive account of the suggested dominance condition.
Given the same signal that a student�s ability is at least ��, the teacher of
the �rst class will hold higher expectations of the actual student ability
than will the other teacher.

Proposition 3 The lower expectations the teacher holds about her stu-
dents�abilities, the more lenient she should be in grading them.

More formally, let fx1(�); r1(�)g and fx2(�); r2(�)g be the solutions
to Program 1 with the distributions F1 and F2 for two classes of stu-
dents, respectively, such that the hazard rates satisfy h1(�) � h2(�) for
18This situation is more likely to happen when the output of a particular produc-

tion unit cannot be immediately assessed if it only contributes to the �nal product,
therefore, it is complicated to design the incentive schemes for managers that would
link labor costs to the produced output (to alleviate which, there is a new practice
of establishing separate pro�t centers within large companies; see Frey and Osterloh,
2002).
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every � in [�a; �b] (with some additional stochastic-dominance quali�ca-
tion speci�ed in the proof below). Then, the relationship between the
resulting optimal grade allocations is

r1(�) � r2(�) for every student type �,

which is in words� the more pessimistic the principal is about her agents,
the more generous she should be in motivating them.
Proof. With reference to Proposition 1, de�neGi(�) = (1�Fi(�))=�fi(�),
and let ��i = minf� : Gi(�) � 1; � 2 [�a; �b]g, i = 1; 2. Evidently, if
f1(�)=(1 � F1(�)) � f2(�)(1 � F2(�)) for every �, then G1(�) � G2(�),
leading to ��1 � ��2. In words, the pooling-equilibrium interval [��; �b], for
which the highest reward of 1 is granted, is larger for the class of less able
students. In particular, we have that r2(�) = 1 � r1(�) for � 2 [��2; �b].
To prove that r1(�) � r2(�) for the student types � in [�a; ��2), we need to
strengthen the stochastic dominance assumption for the support interval
in question. In particular, we need the dominance in the likelihood-ratio
order, i.e., f1(�)=f2(�) is increasing in � 2 [�a; ��2].19 Since the e¤ort level
x2(�

�
2) must be at least as large as x1(�

�
2), which stems from the second

teacher�s incentive to expand the pooling equilibrium even further than
the �rst teacher is inclined to do, then from eq. (10) it follows that
A2f2(�

�
2) � A1f1(��2). Given the increasing likelihood ratio f1(�)=f2(�),

we obtain that the inequality A2f2(�) � A1f1(�) holds for every � to the
left from ��2, which from eq. (10) renders x2(�) � x1(�) for every � in
[�a; �

�
2), which subsequently leads to r2(�) � r1(�).
Figure 1 below illustrates Proposition 3. The two diagrams on the

left show the distributions for student types that the teachers of the
�rst class (top-left) and second class (bottom-left) hold. Respectively,
the diagrams on the right depict the optimal e¤ort-grade allocations
for the two classes. As discussed above, the teacher of the �rst class
o¤ers the highest grade of 1 to fewer students but against a higher cost
(e¤ort) than the teacher of the second class does. In general, comparing
the grade-e¤ort allocations in both classes, we are to observe that the
teacher of the �rst class with relatively more able students o¤ers a steeper
grade-e¤ort schedule. The reason for this is that the �rst teacher in her
attempts to extract more e¤ort from good students makes sure that they
are not lured to take less e¤ort, for it will result in a substantially smaller
grade. Di¤erently, the teacher of the second class focuses on less able
but more numerous students and attempts to extract more e¤ort from
them leaving more able students with high information rents.

19It hasn�t been done before (just a quali�cation was made) for the reason that
the hazard-rate order dominance is su¢ cient to obtain the di¤erence in the pooling-
equilibrium intervals, which is the driving result of the proposition.
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In this light, it should not be surprising from our analysis perspective
that, given di¤erences in the classes of students, some teachers turn
out to be more generous than others, leading to the phenomenon of
the mismatch between grades and abilities with direct implications to
grade in�ation (for an extensive study into this problem, see Johnson,
2003). Arguably, if students taking, say, mathematics classes are more
capable than those students opting for less involved classes, then, as
the model predicts, we should observe fewer highest grades among the
mathematics students than among those taking an easier class. Hence,
within our developed framework we can obtain a low correlation between
grades and abilities (as there is ample empirical evidence on that, which
is explored in the following section), but that could be the outcome of
the optimal incentive scheme design, and not necessarily the outcome
of some teachers�rent-seeking behavior, as sometimes is suggested (e.g.,
Johnson, 1997).
Of course, the normative side of the issue that di¤erences in grading

standards may create perverse incentives to some students has to be
separately examined, however, it needs to be stressed that the cause
of those di¤erences could be that teachers rationally take into account
variation in student abilities when designing grading rules.
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5 Empirical Evidence

The theoretical predictions of the model, in particular that in Proposi-
tion 3, seem to be empirically testable, for the necessary data needed
for this purpose such as student grades and their ability proxy (like
their performance on university entry exams or Scholastic Aptitude Test
[SAT] scores) should be available at any university. Then, we would
need, roughly speaking, to compare grading patterns at classes with
di¤erent student ability distributions. However, and not surprisingly,
there have been a number of empirical studies of the kind in the spe-
cial literature of educational measurement (e.g., in academic periodicals
such as Journal of Educational Measurement or Educational and Psy-
chological Measurement). Most importantly, those studies without an
exception do report the results that are fully in line with the model�s
predictions: studied �elds with lower ability students as compared with
those of higher ability students employ less stringent grading criteria.
Despite that many of those studies are fairly comprehensive in empirical
matters, they lack any rigorous theoretical explanation for this phenom-
enon, hinging mainly on the level of intuition or reference to similar
phenomena from the adaptation-level theory in psychological literature.
In what follows, we attempt to review closely some of the empirical
studies comparing grading standards throughout time and among di¤er-
ent �elds, and to show that the model developed here proves helpful in
explaining the observed empirical evidence.
Aiken (1963) is one of the �rst empirical studies that suggest that

the grading behavior is dictated by the quality of students in the cur-
rent class and not by some absolute invariant standards. Aiken (1963)
presents time-series evidence from the Woman�s College of the Univer-
sity of North Carolina that could imply that with more able students
in a class (as measured by their SAT scores and high-school rankings)
teachers tend to apply more stringent grading standards. As for the
theoretical explanation of this �nding, the study just brie�y mentions
that it conforms with the adaptation-level theory or central tendency
phenomenon, which is basically about the tendency of supervisors to
evaluate the performance of the supervised in relative terms rather than
in absolute ones.
A much more comprehensive study Goldman and Widawski (1976)

�rstly point out the weaknesses of previous studies on grading patterns
for their using the total grade point average (GPA) as the criterion of
grading standards. As they justly argue, GPAs are neither perfectly
comparable throughout time nor among individual students because of
a possibly di¤erent composition of courses included to compute grade
averages. To remedy that, Goldman and Widawski (1976) employ a
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between-subjects design aimed at making grades�comparisons more ef-
fective. They compute an index of grading standards using pairwise
comparisons of grades in 17 major �elds at the University of Califor-
nia, Riverside, from a random sample of 475 students. In particular,
they perform the comparison of grading standards in one class (say,
psychology) against those in another class (say, biology) by computing
the di¤erence in average grades of only those students who took both
classes. After obtaining di¤erentials in grading standards between any
two classes (from 17 classes available in their study), they construct an
index of grading standards for each class, which is an average of all the
di¤erentials between that particular class and the rest of the classes. Fi-
nally, they correlate the computed indices of grading standards with the
average scores on the verbal and mathematical portions of the SAT test
and high-school GPAs (i.e., student ability proxies) of all the students
majoring in those 17 classes. The main empirical �nding in Goldman
and Widawski (1976) is that the constructed index of grading standards
correlates highly in a negative direction with student ability proxies. In
other words, they conclude that professors in a �eld containing more able
students tend to grade more stringently than do professors in �elds with
lower ability students. As a result of that, they �nd that the past per-
formance and abilities of students account for only slightly more than 50
percent of the variance in grades, and suggest introducing some grade
adjustment mechanism to make grades more informative of students�
true abilities. Again, as for giving an explanation of the obtained empir-
ical results, they restrict the argument just to making a reference to the
adaptation-level theory that people are judged in comparison to their
peers.
In a similar study Goldman and Hewitt (1975), besides presenting

the empirical results (which draw the same conclusions about grading
behavior as in the studies mentioned above), there is also a more elabo-
rate theoretical explanation for the obtained results. The authors believe
that the antecedents (e.g., student ability levels, work habits, etc.) and
consequences (grading standards) of college grading are inextricably tied
together by a personal characteristic of college instructors. This char-
acteristic is the phenomenon of adaptation level, and it is so pervasive
among college instructors and perhaps people in general, Goldman and
Hewitt (1975) continue, as to be considered an almost inevitable factor
in college grading process. Consequently, through that personal charac-
teristic link grading standards would be partly determined by the ability
level of the student population. However, along the lines of our model,
developed above in the text, this personal characteristic, as envisaged
by Goldman and Hewitt (1975), is not some intrinsic feature of human
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behavior but rather the outcome of optimal behavior.
A decade later, Strenta and Elliott (1987) replicate the study of Gold-

man and Widawski (1976) using data from a di¤erent institution, Dart-
mouth College, just to �nd that the di¤erential grading standards exist
in the same magnitude and in roughly the same order. Hence, Strenta
and Elliott (1987) argue that it remains the case that students with
higher SAT scores tend to major in �elds with more rigorous grading
standards, and that factors attracting more talented students result in
their being graded harder. (Though, we would say that because more
talented students are attracted to some particular classes, the professors
of those classes tend to grade them more stringently, which is to say,
optimally.) As before, Strenta and Elliott (1987) continue arguing that
these di¤erential grading standards serve to attenuate the correlation
between the GPAs and SAT scores of the students. However, they also
show that the correlation sizably increases if GPAs are adjusted by ac-
counting for di¤erences in departmental grading standards. Finally, a
similar study conducted in Duke University (Johnson, 2003) con�rmed
the conclusions about systematic di¤erences in grading standards of the
previous studies.
Concerning the normative side of the discussed di¤erential grading

standards, there have been a number of papers proposing grade adjust-
ment mechanisms (see, e.g., Johnson, 1997) in order to make grades
more informative of students�actual abilities. Without going into the
details of this literature, it is worth noticing that, typically, those papers
tend to assume that the true reason for di¤erential grading standards lies
with some personal features of the instructor (e.g., the adaptation level,
unwillingness to spend o¢ ce hours on dealing with students�complaints
about low grades, etc.). Therefore, the proposed grade adjustment mech-
anisms would attempt to correct for presumed instructor-speci�c factors
failing to recognize the possible endogeneity of those factors, which could
lead the mechanism astray from the projected goals.

6 Conclusion

In this paper, we solve for the optimal contract in an agency problem
featuring costless non-pecuniary rewards, and apply the obtained results
to provide alternative explanations for the compression of ratings and
mismatch between students�abilities and grades. We argue that in equi-
librium the variation in assigned rewards can be coarser than the under-
lying distribution for abilities. In particular, unless the principal is very
optimistic about the overall distribution of agent abilities, to set uniform
incentives for all agents conditional on their achieving some prespeci�ed
minimum standard can constitute an optimal contract. Speci�cally for
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student grading schemes, if the teacher�s goal is to induce her students
to study as hard as possible, we should observe higher grades in classes
with fewer able students. Importantly, the existing empirical evidence
strongly supports the predictions of the model presented in this paper
lending validity to the chosen modeling technique.
Therefore, the proposed framework could be potentially used as the

"microfoundations" of student grading or job performance appraisal to
analyze other related problems. For instance, if the model were made
dynamic, then we could potentially look into the phenomenon of grade
in�ation over time or how to design the evaluation process to reduce
the observed ine¢ ciencies (i.e., coarse grading or rating schemes) of
a static relationship. Further research could be done on studying the
implications on student e¤ort-grade allocations after the introduction of
incentives for teachers or on developing grade-adjustment mechanisms to
make the intercomparison of grades between various classes, departments
or schools possible.
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