

Premature Apprenticeship Terminations: An Economic Analysis (Donata Bessey and Uschi Backes-Gellner)

Conference on Economics of Education, Firm Behavior, and Training Policies University of Zurich, June 26, 2008

Motivation (1)

- Scarcity of apprenticeship places in CH and GER
- \bullet 20 25 % of all apprenticeship contracts terminated before completion not necessarily dropouts
- An early termination can lead to...
 - Changing
 - Upgrading
 - Dropping out (risky!)
- Importance of dropouts: 10 23 % of youths with an early termination stop any educational attainment afterwards (different data sets, CH, D)

Motivation (2)

- Problematic: Dropout behavior (changers: bad match, even efficient)
- Higher level of education => higher income, lower risk of unemployment

	Without appr.	Apprenticeship	University degree
Unempl. rate	26.3 %	9.9 %	4.5 %

Source: Arbeitsmarkt in Zahlen 2003

- Reasons for this (at least at first sight) irrational behavior? Really irrational to drop out?
- Oreopoulos (2005): dropping out difficult to explain with the standard human capital model

Research Question

- Focus of this work:
 - dropout determinants as compared to changers and upgraders
 - Policy implications (for firms and teachers): How can dropouts be avoided?
- Previous research on the topic from an economic perspective:
 none (up to my knowledge)
- New about our approach: clear-cut background, new data set

Plan of Talk

- Theoretical Considerations
- The Data Set, Descriptive Statistics
- Estimation Results
- Conclusion

Theory (1): Human Capital

- Rational individuals decide over their investment in education using discounted costs and earnings streams
- Dropouts from a human-capital (rational) point of view:
 (NPV < 0) => dropping out is rational!
- Data set allows for an analysis based on this approach (using proxies for costs, benefits, time preference)
- We analyze the decision to continue an apprenticeship

Theory (2): Regional Labor Markets

- Extreme regional differences in patterns of behavior reason?
- Model by Wheeler (2001): stronger incentives to invest in human capital in thicker labor markets (better matches => higher wages)
- We incorporate a regional weighting factor for the benefits in the classical HC model, but not for the costs
- Implicitly: matching argument, but still static model

Theory (3): Summary

The "standard" model for any investment (e.g., in human capital)

$$NPV = \int_t^T R_i e^{-ri} di - \int_0^t C_i e^{-ri} di$$

=> include a weighting factor μ in [0,1] that captures local labor market conditions for benefits:

$$apprenticeship = \begin{cases} 0 & \text{if} \quad \int_0^t C_i e^{-ri} di > \mu_g \int_t^T R_i e^{-ri} di \\ 1 & \text{if} \quad \int_0^t C_i e^{-ri} di \leq \mu_g \int_t^T R_i e^{-ri} di \end{cases}$$

- Incentives to invest in general
- Importance of labor market thickness (extreme case: $\mu = 0$)

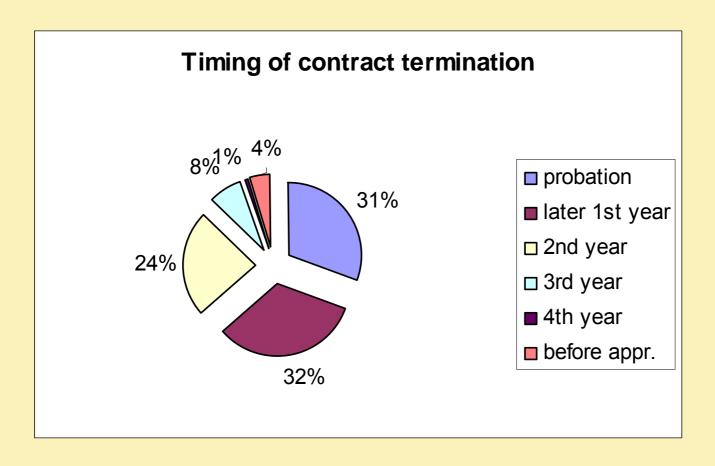
Testable Hypotheses

- Incentives to complete an apprenticeship:
 - Incentives to complete
 † when costs lower, benefits higher, patience of individual higher
 - Incentives ↑ in thicker labor markets

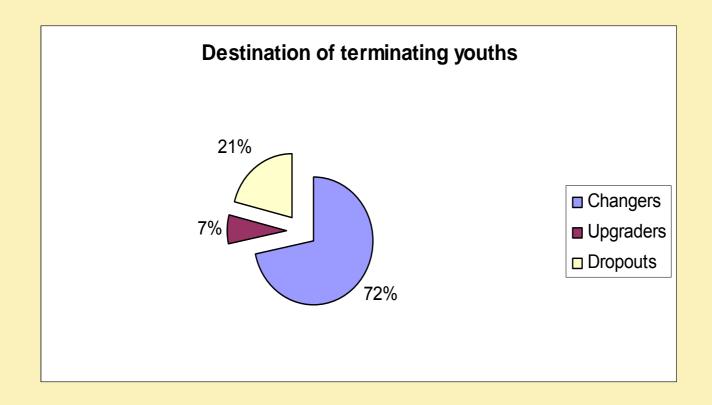
The BiBB Data Set (1)

- Questionnaire and survey realized by BiBB in 2000/2001 ("Vertragslösungen 2002 – Strukturen und Gründe")
- n = 1,557
- 7 chambers of commerce and industry (IHK),
 6 chambers of crafts (HWK)
- Regional provenance: IHKs Kiel, Leipzig, Mittlerer Niederrhein, Freiburg, Frankfurt/Oder, Darmstadt, Augsburg
- HWKs Rostock, Osnabrück, Aachen, Ostthüringen, Flensburg, Karlsruhe
 - => Allows to include regional characteristics!

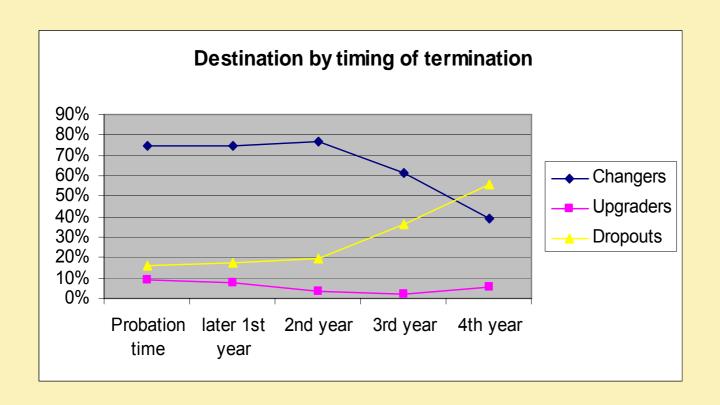
The Chamber Districts

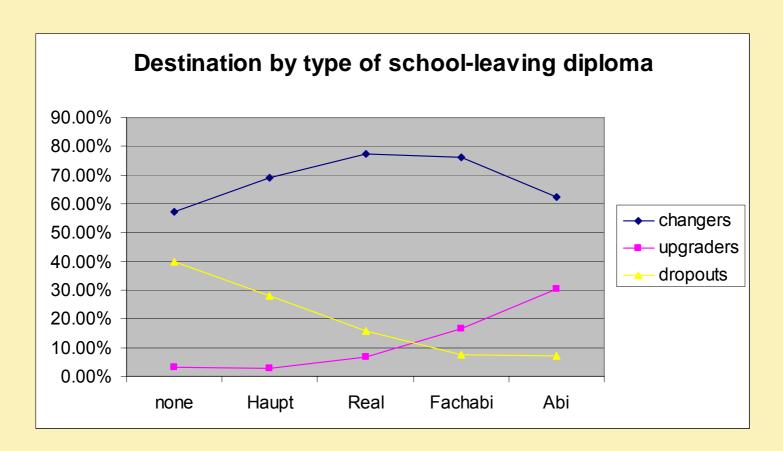


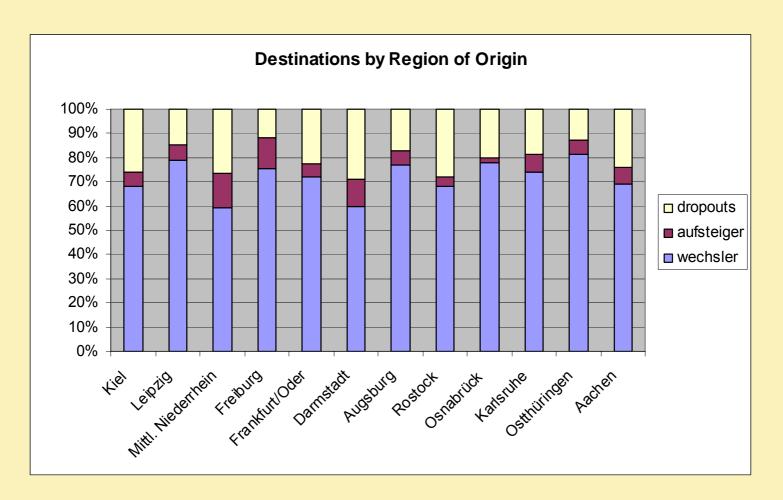
The BiBB Data Set (2)


Questions include...

- current status
- firm-level reasons (overtime work, clash with boss/colleagues, low quality of in-firm training...)
- job-related reasons (wrong idea, bad prospects...)
- school-related reasons (bad teaching quality, clash with teachers, exam nerves...)
- personal reasons (health problems, financial distress, relocation...)
- timing (year of apprenticeship)
- type of school-leaving diploma, native tongue, occupation chosen
- firm size
- Former work with the data set: only descriptive statistics


Descriptives (1)


Descriptives (2)


Descriptives (3)

Descriptives (4)

Descriptives (5)

Upshot of descriptive evidence, implications for estimation strategy

- Timing and prior level of schooling
- Regional differences Model by Wheeler (2001): better matches in bigger labor markets => more investment in human capital
- Proxies for costs, benefits, time horizon
- Add more (non-monetary) cost- and benefit-related variables:
 - girls in male occupations and vice versa
 - opportunity costs of an apprenticeship (wages for unskilled)
 - regional information

Estimation strategy

• We estimate a logit/probit model for the following baseline equation...

$$dropout_{ij} = \beta_1 x_{ij} + \beta_2 x_i + \beta_3 x_j + u_{ij}$$

- ij: individual-and regional-level characteristics (benefits)
- i: individual-level characteristics (schooling)
- j: regional-level characteristics (labor market)
- error term u: we adjust for clustering on regions
- NB: not efficient estimation strategy but results handier to interpret
- The **control groups** are changers/changers and upgraders/bankruptcy victims

Estimation strategy (2)

Assumption: apprentices in bankrupt firms can be treated as "successful" apprentices and hence provide a third control group

	Bankruptcy victims	Entire sample	
dropouts	0.0963	0.2112	
changers	0.8464	0.7160	
upgraders	0.0500	0.0728	
n	280	1676	

Empirical Results (1)

	36.116	16.116	37.11.
	Model 1	Model 2	Model 3
Boy in female job	-0.016	-0.027	0.068
	[0.029]	[0.031]	[0.049]
Girl in male job	0.057*	0.063*	0.061
	[0.030]	[0.033]	-0.084
Exam nerves	0.129*	0.132*	0.327***
	[0.086]	[0.087]	[0.048]
Financial distress	0.178***	0.184***	0.272***
	[0.050]	[0.052]	[0.042]
Bad prospects	-0.045	-0.041	0.066
	[0.06]	[0.07]	[0.219]
Bad income prospects	0.058	0.053	0.276***
	[0.048]	[0.05]	[0.096]
Bad career prospects	-0.051	-0.056	-0.065
	[0.052]	[0.062]	[0.177]
Regional unemployment rate	2.087***	2.358***	0.162
	[0.417]	[0.425]	[1.066]
Percentage in out-of-firm	-0.434***	-0.493***	-0.011
training	[0.091]	[0.091]	[0.334]
Population density	-0.014	-0.013	-0.104
	[0.023]	[0.024]	[0.064]
Supply-demand ratio on	-0.076***	-0.085***	-0.125**
the apprentice market	[0.023]	[0.025]	[0.060]
Transport smoothness	0.031	0.034*	0.108
	[0.019]	[0.019]	[0.049]**
Migration background	0.063	0.068	0.043
	[0.049]	[0.053]	[0.101]
Female	-0.067***	-0.08***	0.071
	[0.016]	[0.019]	[0.055]
\overline{n}	1556	1443	572
LogL	-702.47268	-684.25346	-313.59713
Pseudo R^2	0.1131	0.1053	0.1959
Controls in all models	firm size	field, year	schooling

Results from a probit model, marginal effects, clustering-robust S.E.s

Empirical Results (2)

	Model 1	Model 2	Model 3
financialincentive	0.281	0.324*	0.074
	[0.185]	[0.195]	[0.382]
$_{ m mig}$	0.052	0.057	-0.018
	[0.069]	[0.075]	[0.121]
female	-0.031	-0.038	0.115
	[0.030]	[0.034]	[0.085]
boygirlsjob	-0.007	-0.016	0.055
	[0.033]	[0.036]	[0.063]
girlboysjob	0.077*	0.088*	-0.016
	[0.045]	[0.047]	[0.086]
badprospects	-0.026	-0.039	-0.247
	[0.065]	[0.072]	[0.180]
badincomeprospects	0.113*	0.109*	
	[0.061]	[0.065]	
badcareerpros	-0.059	-0.05	0.360**
	[0.074]	[0.090]	[0.145]
examnerves	0.105	0.107	0.412***
	[0.092]	[0.089]	[0.072]
findistress	0.266***	0.280***	0.341***
	[0.075]	[0.078]	[0.038]
percbue2	-0.428***	-0.476***	0.122
	[0.163]	[0.164]	[0.487]
labmarket2001	0.01	0.014	-0.207***
	[0.029]	[0.030]	[0.073]
supdem2001	-0.130***	-0.140***	-0.282***
	[0.030]	[0.037]	[0.096]
accpop	0.019	0.02	0.188***
	[0.023]	[0.024]	[0.060]
unempl01	2.002***	2.241***	0.56
	[0.508]	[0.582]	[1.633]
n	876	809	343
LogL	-404.69866	-393.66299	-189.47774
Pseudo R^2	0.1263	0.1166	0.2013

Results from a probit model, marginal effects, clustering-robust S.E.s

Sensitivity Analysis

- Estimate a multinomial model for the different paths and use (again) the bankruptcy victims as a control group
- Results do not change
- Still To Do: take time into account

Summary

- Analysis using human capital theory with a spatial component
- Evidence for importance of short-term (non-monetary) cost of an apprenticeship and local labor market situation
- Decision to drop out: from an individual's point of view rational in a short-term perspective (but probably not in the long run)
- Tentative Policy Implications
 - Regional level: mobility
 - Individual level: case management

Thank you for your attention