

Simulation of age-dependent skill formation

Karsten Reuß Centre of European Economic Research Mannheim, Germany

International Conference on Economics of Education, Firm Behaviour and Training Policies June 27th 2008

Overview

- A simulation model of skill formation over the life cycle
- Differences in skill formation of a heterogeneous population
- Analysis of Returns to education in early and later life
- In whom should a society invest ?
- The influence of the labor market on adult skill formation

Cognitive Skills

- Memory power of the brain
- Brain information processing speed
- mathematical, logical and language skills ...
- most of these skills are formed until the age of six years
- Early environment (in utero conditions, family) are important

Romanian adoptees: Cognitive Skills at the age of 6 subject to time of adoption

O'Connor, Thomas G.; Rutter, Michael (2000),

The Effects of Global Severe Privation on Cognitive Competence: Extension and Longitudinal Follow-up, Child Development 71, 376-390.

Motivational Skills

- self-regulation
- motivation
- social integration
- persistance
- Young age is more important than old age, but skills remain more malleable at later ages compared to cognitive skills
- Familiy, school, peer group interactions are important

The Technology of skill formation

Cunha, F. and J. J. Heckman (2007), The Technology of Skill Formation, The American Economic Review 97 (2), 31-47.

- Skills acquired in one period are available in later periods (self-productivity, recursive productivity)
- Skills acquired in the past make subsequent investments more productive (direct complementarity)
- Sensitive or critical periods (evidence form other disciplines: neurobiology, developmental psychology)
- Early investments yield the highest returns

$$S_{2}^{C} = \left\{ \gamma_{1}(S_{1}^{C})^{\alpha} + \gamma_{2}(S_{1}^{N})^{\alpha} + (1 - \gamma_{1} - \gamma_{2})(I_{2}^{C})^{\alpha} \right\}^{\frac{1}{\alpha}}$$

Adding novel features to the technology of skill formation to cover a life-span perspective

- Integrating biological and social age-dependent aspects of skill formation and depreciation reflected by learning multipliers
- Multiperiod feedback systems (80 periods = 80 years)
- Age-dependant earnings
- Exogeneous investments in childhood (family background)
- Endogeneous investments in adult life
- Heterogeneity in environment and giftedness
- → Computation of the change in lifetime earnings caused by skill investments

Overview of the Simulation Model

Cognitive Skill Formation over the Life Span

ww.zew.de · www.zew.eu

Motivational Skill Formation over the Life Span

One Indicator:

Development of Conscientiousness

- Conscientiousness and school grades are highly correlated
- seems to be closely related with motivational (non-cognitive) skills

Model Simulation

$$\mathbf{S}_{t}^{N} = \mathbf{I}_{t}^{N} \cdot \left(\mathbf{S}_{t-1}^{N\frac{1}{3}} \cdot \mathbf{S}_{t-1}^{C\frac{1}{3}} \cdot \mathbf{I}_{t}^{N^{\delta \cdot \frac{1}{3}}} \right) + \mathbf{S}_{t-1}^{N} - \frac{\mathbf{S}_{t-1}^{N}}{\mathbf{V}_{t-1}}$$

ww.zew.de · www.zew.eu

Assessing human capital and returns to education

 new Human capital (" labor markt relevant abilities") is produced by human capital stock and skills

$$H_{t} = \Psi_{H} \cdot \left(S_{t-1}^{C-\gamma \cdot \frac{1}{3}} \cdot S_{t-1}^{N-\gamma \cdot \frac{1}{3}} \cdot H_{t-1}^{\gamma \cdot \frac{1}{3}} \right) + (1 - \delta_{t-1}^{H}) \cdot H_{t-1}$$

Introducting hetereogeneity in the model

PISA 2000: Reading Literacy, 9th Class

A population of heterogeneous individuals

Willingness to pay for adulthood education for a heterogeneous population

Utility and costs of an educational investment

Returns to a primary school investment

maximization of social income vs. inequality aversion

maximization of social income vs. utility maximization

		Giftedness						
Environ- ment	Percentile	1.	10.	25.	50.	75.	90.	99.
	1.	192,761 (1.34%)	528,034 (8.75%)	723,242 (10.56%)	879,665 (11.60%)	1,000,000 (12.24%)	1,090,000 (12.67%)	1,220,000 (13.19%)
	10.	212,571 (1.01%)	628,308 (7.37%)	878,758 (8.84%)	1,080,000 (9.64%)	1,240,000 (10.19%)	1,360,000 (10.54%)	1,540,000 (11.04%)
	25.	224,759 (0.84%)	692,995 (6.68%)	980,378 (7.99%)	1,220,000 (8.80%)	1,400,000 (9.20%)	1,540,000 (9.51%)	1,740,000 (9.84%)
	50.	235,924 (0.70%)	754,169 (6.13%)	1,080,000 (7.37%)	1,340,000 (7.94%)	1,550,000 (8.37%)	1,710,000 (8.73%)	1,950,000 (9.13%)
	75.	245,940 (0.60%)	810,567 (5.70%)	1,170,000 (6.84%)	1,460,000 (7.37%)	1,700,000 (7.75%)	1,870,000 (8.04%)	2,130,000 (8.37%)
	90.	254,462 (0.52%)	859,642 (5.37%)	1,250,000 (6.45%)	1,570,000 (6.98%)	1,820,000 (7.24%)	2,010,000 (7.44%)	2,300,000 (7.80%)
	99.	269,261 (0.40%)	947,191 (4.87%)	1,390,000 (5.81%)	1,760,000 (6.32%)	2,050,000 (6.59%)	2,270,000 (6.83%)	2,600,000 (7.06%)

Income heterogeneity for different labour markets

(calibrated to wage inequality data (socio economic panel))

2

0

-25

50

Age

100

Karsten Reuß

100

80

60

40

Percentile

20

0 0

www.zew.de · www.zew.eu

Relative returns to education and wage inequality

Percentile	90:10 ratio of 1.89 (low)	90:10 ratio of 3 (medium)	90:10 ratio of 7 (high)
1.	14.65%	27.59%	54.27%
10.	9.52%	17.78%	33.91%
25.	7.58%	14.13%	26.66%
50.	6.26%	11.70%	21.89%
75.	5.35%	10.02%	18.66%
90.	4.73%	8.87%	16.45%
99.	3.88%	7.32%	13.50%

Attainment of tertiary education and labour market inequality

Future Research questions :

- Evaluating the effect of income shocks with respect to risk aversion, time preference on skill investment and labour market inequality
- Analysing long-term heterogeneity driving factors in a stochastic multigeneration, skill formation model
- Estimation based simulation with new data (Central institute of mental health, Mannheim)
- Modelling early family interactions in a cooperative signalling game and their economic consequences, their consequences for subsequent skill formation

Thank you for your attention

Setting up the skill production functions

• CES production function of Heckman:

$$S_{2}^{C} = \left\{ \gamma_{1}(S_{1}^{C})^{\alpha} + \gamma_{2}(S_{1}^{N})^{\alpha} + (1 - \gamma_{1} - \gamma_{2})(I_{2}^{C})^{\alpha} \right\}^{\frac{1}{\alpha}}$$

• transformed to a stock variable:

$$\mathbf{S}_{t}^{C} = \mathbf{I}_{t}^{C} \cdot \left(\mathbf{S}_{t-1}^{C^{\frac{1}{3}}} \cdot \mathbf{S}_{t-1}^{N^{\frac{1}{3}}} \cdot \mathbf{I}_{t}^{C^{\delta^{\frac{1}{3}}}} \right) + \mathbf{S}_{t-1}^{C} - \frac{\mathbf{S}_{t-1}^{C}}{\mathbf{V}_{t-1}}$$

ations:

• Calibrations:

$$\mathbf{a}\mathbf{y}_1 = \mathbf{y}_2 = \frac{1}{3} \qquad \text{and } \mathbf{x}\mathbf{b} \neq \mathbf{0}$$

- b) Empircally estimated $\alpha = -0.13$ doesn't change results much
- Cunha, F., J. J. Heckman and S. Schennach (2008), Estimating the Technology of Cognitive and Noncognitive Skill Formation, *Econometrica* (under revision).

Validation of parameter calibration a)

$$\gamma_1 = \gamma_2 = \frac{1}{3}$$

Table 1: Elasticities from Cunha, F. and J. J. Heckman (2008), Formulating, Identifying and Estimating the Technology of Cognitive and Noncognitive Skill Formation, *Journal of Human Resources*, forthcoming.

	Next Period Noncognitive	95% Confidence Bounds	Next Period Cognitive	95% Confidence Bounds
Current Noncognitive	0.8835	0.8413; 0.9256	0.0282	0.0025; 0.0539
Current Cognitive	0.0181	-0.0073; 0.0435	0.9814	0.9054; 1.0574
Current Period Investment	0.0601	0.0197; 0.1004	0.0566	0.0297; 0.0835
Mother's Education	0.0067	-0.0105; 0.0239	0.0047	-0.0075; 0.0169
Mother's Ability	-0.0063	-0.0198; 0.0072	0.0290	0.0086; 0.0494

Table 2: Elasticities resulting from our model (2-period mean effects of periods 8 to 13):

	Next Period Noncognitive	Next Period Cognitive
Current Noncognitive	0.92433	0.04092
Current Cognitive	0.03204	0.91775
Current Investment	0.05095	0.12317

Multidimensionality of noncognitive skills

Neuroticism

Karsten Reuß

www.zew.de · www.zew.eu

firtschaftsforschung Gmb

Absolute and relative Returns to Education

in discounted lifetime earnings

in percentage points

The influence of income inequality on investment incentives

Income Maximization

- adult education costs money
- The price of one unit of tertiary education in both skills is set at 10,613 €annually (this value equals the OECD 2007 calculation for per capita expenditures of tertiary education in Germany)
- individuals maximize the cumulated, discounted sum of income

max U =
$$\sum_{t=18}^{65} (Income_t(I_t) - C_t(I_t))$$