On schooling and risk Joop Hartog

University of Amsterdam Zurich

June 262008

education is a decision under uncertainty:

the requirements of the school curriculum occupations available after graduation abilities and preferences
returns

Immediate questions:

1. how much risk in the investment stage?
2. how much risk in the returns?
3. does risk affect individual choice?
4. how does risk affect educational policies?

Outline:

1. risky returns
2. risk and educational choice
3. compensation and pay-off
4. selectivity: what do students know?
5. educational policy: what curriculum?

Amsterdam School of Economics

Risky returns

earnings variance by education: no standard pattern

Residual variance by education, LIS data

 (schooling, age):$$
\sigma_{i}^{2}=\gamma_{0}+\gamma_{1} s_{i}+\gamma_{2} s_{i}^{2}+\gamma_{3} s_{i} a_{i}+\gamma_{4} a_{i}+\gamma_{5} a_{i}^{2}+u_{i}
$$

Figure 1. Earnings Dispersion by Levels of Education

Australia

Netherlands

Finland

Chen and Khan (2005):

residual standard deviation
OLS:
high school:
0.370
college 0.397
Heckman two-stage
0.445
0.455

Cunha, Heckman and Navarro (2005):
60% of variability in returns to education is forecastable at the individual level (heterogeneity), 40% is risk

Palacios-Fuerta, AER (2003):

mean-variance frontier does not improve if returns from financial assets are added to returns from human capital, adding human capital to finencial assets does improve

Simulation: Hartog, van Ophem, Bajdechi (2007)

Simulation ex ante CV 0.3:

Figure 1. Distribution of internal rates of return. (a) $\rho=0.5, \sigma_{u \mathrm{HS}}=\sigma_{u \mathrm{C}}=0.45, \gamma_{\mathrm{HS}}=\gamma_{\mathrm{C}}=0.6 ; \beta_{1, \mathrm{HS}}=$ $\beta_{1, \mathrm{C}}=0.065, \beta_{2, \mathrm{HS}}=\beta_{2, \mathrm{C}}=0.05, \beta_{3, \mathrm{HS}}=\beta_{3, \mathrm{C}}=-0.001$. (b) $\rho=-1, \sigma_{u \mathrm{HS}}=\sigma_{u \mathrm{C}}=0.45, \gamma_{\mathrm{HS}}=\gamma_{\mathrm{C}}=0.6 ; \beta_{1, \mathrm{HS}}=$ $\beta_{1, \mathrm{C}}=0.065, \beta_{2, \mathrm{HS}}=\beta_{2, \mathrm{C}}=0.05, \beta_{3, \mathrm{HS}}=\beta_{3, \mathrm{C}}=-0.001$.

Educational choice

Levhari and Weiss, AER (1974)
Increasing risk (variance pay-off to school time) reduces investment if good states of the world generate higher marginal returns to education.

Hogan and Walker, Labour economics special 14 (6), 2007 Option value model: risk up,longer in school

Jacobs, Labour economics special 14 (6), 2007
Option value model: risk up, shorter in school

Hartog and Diaz- Serrano (2007) Journal of Applied Economics X (1)

$$
\begin{aligned}
& Y_{s t}=\theta_{s t} Y_{s} \\
& E\left(\theta_{s}\right)=1 \\
& E\left\{\theta_{s}-E\left(\theta_{s}\right)\right\}^{2}=\sigma_{s}^{2}
\end{aligned}
$$

θ_{s} stochastic shock around Y_{s} single lifetime realisation,
variance dependent on schooling length s.
Max lifetime expected utility:

$$
\begin{aligned}
W & =E \int_{s}^{\infty} U\left\{\theta_{s} Y_{s}\right\} e^{-\rho t} d t \\
& =\frac{1}{\rho} e^{-\rho s} E\left[U\left(\theta_{s} Y_{s}\right)\right]
\end{aligned}
$$

Solve:

$$
\varepsilon_{s}\left\{\mu_{s}-\alpha_{s} \sigma_{s}^{2}\left(\mu_{s}+\gamma_{s}-\frac{1}{2} \rho\right)\right\}-\rho=0
$$

团
with

$$
\mu_{s}=\frac{\partial Y_{s}}{\partial s} \frac{1}{Y_{s}} \geq 0
$$

$$
\gamma_{s}=\frac{\partial \sigma_{s}}{\partial s} \frac{1}{\sigma_{s}}
$$

$$
\alpha_{s}=\frac{U^{m}\left(Y_{s}\right)}{-U^{\prime}\left(Y_{s}\right)} Y_{s}
$$

$$
\varepsilon_{s}=\frac{\partial U}{\partial Y_{s}} \frac{Y_{s}}{U\left(Y_{s}\right)}>0
$$

$$
\left(\mu_{s}+\gamma_{s}>\frac{1}{2} \rho\right)
$$

increase in risk decreases optimum schooling for risk averters $\left(\alpha_{s}>0\right)$
increase in risk increases optimum schooling for risk lovers $\quad\left(\alpha_{s}>0\right)$
if risk strongly falls with education : $\left(\gamma_{s}<\frac{1}{2} \rho-\mu_{s}\right) \quad$ Conclusion reversed
increase in risk gradient
reduces optimum schooling length for risk averters increases it for risk lovers.

Amsterdam School of Economics

Table 7 Probit estimation for demand for higher education with Gambling

					Model 1	
	Model 2					
	Coef.	M.E.	Z-stat	Coef.	M.E.	Z-stat
Return	0.6919	0.2608	3.45	0.3724	0.1404	2.89
Risk	-0.2234	-0.0842	-2.73	-0.1402	-0.0528	-2.22
Risk*Lottery (1\%)	0.2089	0.0787	1.89	0.1267	0.0477	1.45
Return	0.6940	0.2616	3.45	0.3839	0.1448	3.00
Risk	-0.2035	-0.0767	-2.82	-0.1304	-0.0492	-2.38
Risk*Lottery (2\%)	0.2532	0.0955	1.96	0.1584	0.0597	1.58
Return	0.6783	0.2557	3.38	0.3760	0.1418	2.91
Risk	-0.1907	-0.0719	-2.64	-0.1261	-0.0475	-2.29
Risk*Lottery (3\%)	0.3290	0.1240	2.38	0.2416	0.0911	2.26
Return	0.6738	0.2540	3.36	0.3745	0.1412	2.90
Risk	-0.1830	-0.0690	-2.60	-0.1212	-0.0457	-2.26
Risk*Lottery (4\%)	0.3200	0.1206	2.19	0.2424	0.0914	2.15

Notes: Probit estimates include dummies for region and for lottery shares. Simulations are based on the estimated coefficients of model B and D in table 3.

Risk: does it pay-off?

Shaw (1996)

$$
W_{t}=\left(1-S_{t}\right) k_{t}
$$

observed wage equals value of human capital stock, net of new investment cost $k_{t}=k_{t-1}+\gamma_{t} S_{t-1} k_{t-1}$
where γt equals the productivity of the investment,
$W_{t-1}=\left(1-S_{t-1}\right) k_{t-1}$
it is straightforward to derive
$\Delta \ln w_{t}=\gamma_{t} s_{t-1}$
$s=\frac{\mu_{h}-\eta}{\sigma_{h}^{2} R}$
$\Delta \ln \mathrm{w}_{\mathrm{i}}=\left(\beta_{0}\right.$ Riskattitude $\left._{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i}} \mathrm{A}+\gamma^{\prime} \mathrm{H}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$

Table 1 Shaw's original results, SCF 83-86 Ln(hourly wage change 1986-1983)

	Asset	Risk dummies		
	Coef	t	Coef	t
Asset	1.04	2.39		
Risk aversion weak (risk 3)			-0.465	-4.37
Risk aversion strong (risk4)			-0.508	-4.54
Change years tenure	0.032	6.08	0.045	5.08
(Change years tenure)^2	-0.0006	-3.07	-0.0007	-2.23
(Change years experience) 2	-0.0007	-3.49	-0.0007	-4.69
Years of education	0.0071	2.42	-.0068	1.79
Number of Observations				
R2	0.0559		0.0586	
Sum squared error/sum weights	22.25		22.05	

Replication (Budria, Ferrer Carbonel, Hartog, EALE Meetings 2008):

US: fair amount of support
Spain: weak support
Germany: no support
Italy: ?

Amsterdam School of Economics

Compensation for risk?

1. A simple formal model

$$
\begin{equation*}
\int_{0}^{T} U\left(Y_{f}\right) e^{-\alpha \alpha} d t=E \int_{0}^{T} U\left(Y_{r}+\varepsilon\right) e^{-\alpha} d t \tag{1}
\end{equation*}
$$

Left-hand side
$\int_{0}^{T} U\left(Y_{f}\right) e^{-\rho t} d t=\frac{1}{\rho}\left(1-e^{-\rho T}\right) U\left(Y_{f}\right)$
third-order Taylor expansion

$$
\begin{align*}
& \int_{0}^{T} U\left(Y_{r}+\varepsilon\right) e^{-\rho t} d t=\frac{1}{\rho}\left(1-e^{-\rho T}\right)\left[U\left(Y_{r}\right)+\frac{1}{2} U^{\prime \prime}\left(Y_{r}\right) \sigma_{p}^{2}+\frac{1}{6} U^{\prime \prime \prime}\left(Y_{r}\right) \kappa_{p}^{3}\right] \tag{3}\\
& \frac{Y_{r}-Y_{f}}{Y_{r}}=-\frac{1}{2} \frac{\sigma_{p}^{2}}{Y_{r}^{2}} \frac{U^{\prime \prime}}{U^{\prime}} Y_{r}-\frac{1}{6} \frac{\kappa_{p}^{3}}{Y_{r}^{3}} \frac{U^{\prime \prime \prime}}{U^{\prime \prime}} Y_{r} \frac{U^{\prime \prime}}{U^{\prime}} Y_{r}=\frac{1}{2} \frac{\sigma_{p}^{2}}{Y_{r}^{2}} V_{r}-\frac{1}{6} \frac{\kappa_{p}^{3}}{Y_{r}^{3}} V_{s} V_{r} \tag{4}
\end{align*}
$$

2. Empirical specifications

CRRA: $U(Y)=\frac{1}{1-\rho} Y^{1-\rho}$ implying $V_{r}=\rho \quad$ and $\quad F_{r}=\rho+1$

Risk Augmented Mincer equation (RAM):

$$
\begin{equation*}
E\left(\ln Y_{s}\right)=\ln Y_{o}+\frac{\delta}{1-\rho} s+\frac{1}{2} \rho \frac{m_{2 s}}{\mu_{s}^{2}}-\frac{1}{6} \rho(\rho+1) \frac{m_{3 s}}{\mu_{s}^{3}} \tag{5}
\end{equation*}
$$

McGoldrick (1995)

$$
\begin{align*}
& \ln Y_{i j}=X_{i} \beta+\sum_{j} \alpha_{j} d_{j}+\varepsilon_{i j} \tag{6}\\
& R_{j}^{(1)}=\frac{1}{N_{j}} \sum_{i}\left(e_{i j}-\bar{e}_{j}\right)^{2} \quad K_{j}^{(1)}=\frac{1}{N_{j}} \sum_{i}\left(e_{i j}-\bar{e}_{j}\right)^{3} \tag{7}
\end{align*}
$$

where $e_{i j}$ is the exponential of the estimated residuals $\varepsilon_{i j}$ in equation (6).

$$
\begin{equation*}
\ln Y_{i j}=X_{i} \beta+\gamma_{R} R_{j}+\gamma_{K} K_{j}+\varepsilon_{i j} \tag{8}
\end{equation*}
$$

Conclusion from 15 studies, 8 countries

Elasticity risk (variance): positive, $\quad 0.1-0.2$
Elasticity skew: negative, $\quad-0.1-0.0$

Survey in Hartog (2007), A Risk Augmented Mincer Earnings Equation? Taking stock

Denmark: alternative measures, panel data 1984-2000
Table 5: Panel estimation of eq. (9) using R and K of the transitory and permanent shocks
Model $1 \quad$ Model $2 \quad$ Model 3

Permanent shocks

Risk $\left(R^{p}\right)$	0.4216	0.3322
	(29.8)	(17.90)
Skewness $\left(K^{p}\right)$	0.0495	0.0390
	-0.0362	-0.0481
	(-20.73)	(-17.84)
	-0.0078	-0.0104

Transitory shocks

Risk $\left(R^{t}\right)$	4.6619	1.5727
	(14.55)	(6.00)
Skewness $\left(K^{t}\right)$	0.1398	0.0472
	-0.4023	4.1831
	(-1.65)	(8.74)
	-0.0012	0.0128

Note: Estimates include years of education, age, age squared, and dummies for year, 14 industries and 8 occupations. Each cell contains coefficient, t-value in parentheses and elasticity in italics.

Diaz Serrano, Hartog, Nielsen, Scandinavian Journal of Economics, forthcoming

Estimating underlying parameters (Hartog and Vijverberg)
i) CRRA, lognormal
$E\left(\ln Y_{j}\right)=\ln Y_{o}+\frac{\delta}{1-\rho} S_{j}+0.5 \rho \sigma_{j}^{2}$
ii) CRRA, non-normal
$E\left(\ln Y_{j}\right)=\ln Y_{o}+\frac{\delta}{1-\rho} s_{j}+\frac{1}{2} \rho \frac{m_{2 j}}{\mu_{j}^{2}}-\frac{1}{6} \rho(\rho+1) \frac{m_{3 j}}{\mu_{j}^{3}}$
iii) TLMU, non normal
$\Pi_{j}=\frac{1}{2} \frac{m_{2 j}}{\mu_{j}^{2}}\left(\rho_{1}-\rho_{2} \ln \mu_{j}\right)-\frac{1}{6} \frac{m_{3 j}}{\mu_{j}^{3}}\left\{\left(\rho_{1}-\rho_{2} \ln \mu_{j}\right)^{2}-\rho_{1}-\rho_{2}+\rho_{2} \ln \mu_{j}\right\}$
utility function (10) TLMU $\ln U^{\prime}=\rho_{1} \ln Y-0.5 \rho_{2}(\ln Y)^{2}$
iv) TLMU log-normal

If we assume log-normality, we can write the moments of the earnings distribution as a function of the parameters of the log normal distribution.

$$
\frac{m_{2 j}}{\mu_{j}^{2}}=R_{j}=e^{\sigma_{j}^{2}}-1
$$

$$
\frac{m_{3 j}}{\mu_{j}^{3}}=K_{j}=e^{3 \sigma_{j}^{2}}-3 e^{\sigma_{j}^{2}}+2
$$

Table 3. Estimated relative risk aversion and relative skewness affection in four models

	Unrestricted TLMU, nonnormal		Restricted TLMU, nonnormal	
	V_{r}	F_{r}	V_{r}	F_{r}
men	-1.60	2.63	0.64	1.03
women	-0.81	3.66	0.46	2.18

Ability bias?

only ability differs (individuals know, researcher does not).
observed wage gap is overestimate of the wage premium (risky wage includes ability in risky job.
observed wage variance is overestimate of risk (includes ability variance)
sign of bias cannot be predicted
simulation does not help (but suggests underestimate of risk aversion)
individualability $\quad w_{n}^{r}=\bar{w}^{r}+a_{n}+\varepsilon$

$$
\sigma{ }_{a}^{2} \sigma^{2} \text { independent }
$$

selection: $\bar{w}^{r}+a \geq w^{s}+\frac{1}{2} \rho \sigma^{2}$

$$
\rho=\frac{\bar{w}^{r}+a_{m}-w^{s}}{\frac{1}{2} \sigma^{2}} \quad a_{m}=m \text { arginalability }
$$

$$
V\left(w^{r} \mid a>a_{m}\right)=\sigma^{2}+V\left(a \mid a>a_{m}\right)
$$

$$
\hat{\rho}=\frac{\bar{w}^{r}+\mathrm{E}\left(a \mid a>a_{m}\right)-w^{s}}{\frac{1}{2}\left[\sigma^{2}+V\left(a \mid a>a_{m}\right)\right]}
$$

4.4 Selectivity: What do students know?

Dominitz and Manski (1996), expected benefits from education.
Widely divergent anticipations.
Male high school students, expected median earnings at age 30, bachelor degree:

10th decile expects 25000 dollars, the 90th decile expects 56000 dollars.
Own dispersion: interquartile ranges of 28000 and 58000 dollars
Perceived returns: 10th percentile expects gain from college of 10000 dollars,
90th percentile they expect a gain of 30000 dollars.

Actual dispersion of earnings by education overestimated

Predictions of their own median expected salary correlate positively with their perception of the actual median:
"Respondents who believe current median earnings to be high (low) tend also to expect their own earnings to be high (low)" (o.c., p 25).

Brunello, Lucifora and Winter-Ebmer (2004)

Expected wage premium over high school graduates in ten European countries (business and economics) unrelated to any variable except age: not to parental background, not to channel of information about future earnings (university publication, career center, special reports, press, personal communication), not to reason for choosing their selected university, not to self-assessed relative ability.

Expectations Swiss students, economics, U of Applied Sciences Dominitz and Manski method Schweri, Hartog, Wolter (2008)

Figures and Tables

Figure 1: distribution of median of students' expected wage distributions

Figure 2: distribution of variance coefficients of students' expected wage distributions

Educational policies: curriculum choice
Woessman: effects of tracking
Brunello: early or late selection? Classification risk versus learning efficiency
Curriculum as portfolio, mean-risk by course:
Hartog and Vijverberg, Economics of Education Review (2007)
Curriculum: specialisation or generalisation?

Specific areas	Middle ground	General areas
Agriculture	Art	Language arts
	Health and physical	
Business	Education	Foreign language
Health occupatins	Music	Mathematics
Home economics	ROTC	Science
Industrial arts		Social Studies
Office occupations		Phillosopy and
	religion	
Technical education	Study skills	

Trade and industry
Residual variance smaller for specific arreas NLSY1979, 20 years, AFOT inclined

A research agenda:

1. How much risk?

Wages, job quality, unemployment
2. What do students know?

Heterogeneity, risk, ignorance
3. Is risk relevant or negligible for educational choice? school type curriculum differences M/F, ethnicity
4. How can school/curriculum reduce labour market risk?

References:

2002 : Linking measured risk aversion to individual characteristics, Kyklos, 55 (1), pp. 3-26, with A. Ferrer-i-Carbonell and N. Jonker
: Low risk aversion encourages the choice for entrepreneurship: an empirical test of a truism, Journal of Economic Behavior and Organization, 48, pp. 29-36, with J.S. Cramer, N. Jonker and C.M. van Praag
2003 : Risk compensation in wages: a replication, Empirical Economics, 28, 639-647, with J. Cabral Vieira, L. Diaz Serrano and E. Plug
2004 : Can students predict their starting salary? Yes!, Economics of Education Review, 23 (2), pp. 103-113, with D. Webbink
2006: Is there a risk-return trade-off across educations? Evidence from Spain, Investigaciones Economicas, XXX (2), pp. 353-380, with L. Diaz Serrano
2007: Earnings risk and demand for higher education, Journal of Applied Economics, X (1), 1-28, with L. Diaz Serrano
: Human capital and risk, In: Human Capital, Advances in Theory and Evidence, Cambridge: Cambridge University Press, J. Hartog and H. Maassen van den Brink, editors, 134-151, with S. M. Bajdechi
: Simulating the Risk of Investment in Human Capital', Education Economics, 15 (3), 259 - 275, with H. van Ophem and S. Bajdechi
: On compensation for risk aversion and skewness affection in wages Labour Economics, Special Issue on Education and Risk, 14 (6), 938-956 with W.Vijverberg
: Schools, skills and risk, Economics of Education Review, 26 (6), 758-770, with W. Vijverberg
forthcoming:
Diaz Serrano, Hartog, Skyt Nielsen, Risk compensation in Denmark, ScandJEcs, Special Issue, 2008
Jacobs, Hartog, Vijverberg (2008), Self-selection bias in estimated wage premiums for earnings risk, EmpEc,

IZA Discussion Papers
DP 2074: Compensation for Earnings Risk under Worker Heterogeneity, with P. Berkhout and D.Webbink
DP 3026: Starting Wages Respond to Employer's Risk, with P. Berkhout
Working paper
A Risk Augmented Mincer Earnings Equation? Taking stock",

