Why do Firms Train Apprentices? The Net Cost Puzzle Reconsidered

Jens Mohrenweiser
University of Zurich

Thomas Zwick
ZEW Mannheim

Economics of Education, Firm Behaviour and Training Policies, Zurich 25-27 June 2008

Overview

- Motivation
- Discussion of Net Training Costs
- Empirical Approach
- Findings
- Conclusions

Motivation

- Extensive literature taking net costs during apprenticeship training as stylised fact
- Ongoing public debate about the future of the German apprenticeship system
- Validation of the net costs hypothesis using representative panel data

Literature

- Direct empirical source for net costs: series of descriptive cross section studies by BIBB
- Lower wages for own apprentices after apprenticeship training (Acemoglu & Pischke, 1998)
- Reasons: Monopsony, asymmetric information on personal traits and training contents, mobility costs (Harhoff & Kane, 1997, Acemoglu & Pischke, 1999)

Literature

- 14% of firms do never take over any apprentices (Mohrenweiser and Backes-Gellner, 2008)
- On average, proportion of apprentices does not have an impact on gross profits (Zwick, 2007)
- In Switzerland only small share of training firms have net costs (Wolter et al., 2006)

Differences between Occupations

- Apprenticeships are not homogeneous
- Manufacturing: specific skills, internal labour markets, shortage of skilled workers on the labour market
- Trade and commerce: general skills, applicable in different industries
- Crafts and construction: general skills, quick productivity, low wages

Hypotheses

- Apprenticeships in commercial and trade occupations do not involve net costs during the apprenticeship period.
- 2. Apprenticeships in manufacturing occupations involve net costs
- 3. Apprenticeships in craft and construction occupations do not involve net costs.

Empirical Approach

- Simulate personnel managers decision between apprentice and unskilled/semiskilled employee
- Impact of (change in) the proportion of apprentice groups on (change in) gross profits – within comparison over time
- Control for establishment and workforce characteristics

Empirical Approach

Cobb Douglas gross profit function

$$\ln \pi_{it} = \delta_1 com_{it} + \delta_2 man_{it} + \delta_3 crafts_{it} + x'_{it}\beta_i + \eta_i + u_{i,t}$$

- OLS
- Fixed Effects
- System GMM with lagged apprentice shares
- Minimum Distance Estimator on basis of System GMM

Data

- Linked employer employee data set of IAB (LIAB)
- IAB Establishment Panel
- Employment Statistics of the IAB (IABS)
- Waves 1997-2002
- Longitudinal version
- Imputations of censored wages

Impact of Training on Gross Profits

	OLS		FEM		Sys GMM				
	Coefficient	t-Value	Coefficient	t-Value	Coefficient	t-Value			
Share of Apprentices in:									
Commercial or Trade Occ.	1.8628	7.61	-0.3443	-0.91	0.9683	2.78			
Manufacturing Occ. Crafts or Constructions	-0.6416	-3.25	-0.2180	-0.65	-1.2437	-2.65			
Occ.	-0.6695	-3.62	0.2423	0.68	1.4731	3.80			
Number of Establishments	8169		2146		1879				
R ² / Number of instruments	0.1773		0.0195		269				

Impact on Profits and Productivity

	Productivity		Gross Profits	
	Coef.	t-Value	Coef.	t-Value
L1 (y)	0.4417	11.27	0.4661	10.42
Share of Apprentice Occupation Group (Ref.: Unskilled Workers):				
Commercial and Trade	2.5468	3.58	0.9683	2.78
Manufacturing	-0.0277	-0.04	-1.2437	-2.65
Crafts and Construction	1.3915	2.22	1.4731	3.80
Further Job Characteristics (Ref: Unskilled Workers):				
Share of Skilled Workers	0.9723	5.09	0.2696	2.31
Share of Part Time Workers	1.3336	4.03	0.1687	0.85
Log(Investment per Capita)	-0.0105	-0.84	0.0065	0.82

Conclusions

- Manufacturing occupations require training investments, their benefits are in employing the apprenticeship graduates
- Shortage of skilled employees on the labour market in these occupations
- Crafts, construction and commercial occupations are cost-neutral
- These occupations do not need regulations or high take-over shares

Conclusions

- The apprenticeship system necessitates no investments in general skills in the majority of occupations
- Relative earnings of apprentices matter for profits
- We have to take lags into account in between calculations